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ABSTRACT: The objective of this study is to develop an element that is both accurate and efficient for modeling
the vehicle-bridge interaction (VBI) in analysis of railway bridges carrying high-speed trains, which may consist
of a number of cars in connection. In this study, a train is modeled as a series of sprung masses lumped at the
bogie positions and a bridge with track irregularities by beam elements. Two sets of equations of motion that
are coupled can be written, one for the bridge and the other for each of the sprung masses. To resolve the
problem of coupling, the sprung mass equation is first discretized using Newmark's finite difference formulas
and then condensed to that of the bridge element in contact. The element derived is referred to as the vehicle
bridge interaction element, which has the same number of degrees of freedom (OaF) as the parent element,
while possessing the properties of symmetry and bandedness in element matrices. For this reason, conventional
assembly procedures can be employed to forming the structure equations. The applicability of the VBI element
is demonstrated in the numerical studies.

INTRODUCTION

Following the pioneer works of Stokes (1849) and Willis
(1849) in the mid-19th century, the vibration of bridges caused
by the passage of railroad cars has been investigated by a great
number of researchers. Partly enhanced by the construction of
high-speed rails worldwide, this subject is becoming a focus
of increasing interest. In a survey paper by Diana and Cheli
(1989), issues relating to the train-bridge interactions have
been discussed, with 90 papers cited. By modeling a moving
vehicle as a moving load, moving mass, or moving sprung
mass considering the suspension effects, the dynamic response
of bridges induced by moving vehicles has been studied by
researchers from time to time (Timoshenko 1922; Jeffcott
1929; Lowan 1935; Ayre and Jacobsen 1950; Ayre et al. 1950;
Biggs 1964; Fryba 1972; Chu et al. 1979; Stangic 1985; Sa
diku and Leipholz 1987; Chatterjee et al. 1994). More
sophisticated models that consider the various dynamic char
acteristics of vehicles or railroad cars have also been imple
mented in the study of vehicle-bridge interactions (VBIs) (Ve
letsos and Huang 1970; Garg and Dukkipati 1984; Yang and
Lin 1995). Recently, closed-form solution has been obtained
by Yang et al. (1996) for the response of simple beams sub
jected to action of high-speed trains modeled as a sequence of
moving loads with regular nonuniform intervals. In his study,
the resonant and cancellation effects of waves generated by
the motion of wheel loads on the bridge have been related to
the ratio of the railroad car to bridge lengths.

In studying the dynamic response of a vehicle-bridge sys
tem, two sets of equations of motion can be written, each for
the vehicle and the bridge. It is the interaction forces existing
at the contact points of the two subsystems that make the two
sets of equations coupled. Because the contact points are time
dependent, so are the system matrices, which therefore must
be updated and factorized at each time step. To solve these
two sets of equations, procedures of an iterative nature are
usually adopted (Hwang and Nowak 1991; Green and Cebon
1994; Yang and Fonder 1996). For instance, by first assuming
the displacements for the contact points, one can solve the
vehicle equations to obtain the interaction forces and then pro-
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ceed to solve the bridge equations for improved values of dis
placements for the contact points. The advantage of such an
approach is that the reponse of vehicles and bridges at any
time step is made available. However, the convergence rate of
iteration is likely to be low, when dealing with the more re
alistic case of a bridge carrying a large number of vehicles in
motion, for there exists twice the number of contact points if
each vehicle is modeled as two sprung mass systems.

Other approaches for solving the VBl problems include
those based on the condensation method. Garg and Dukkipati
(1984) used the Guyan reduction scheme to condense the ve
hicle degrees of freedom (DOF) to the associated bridge DOF.
Recently, Yang and Lin (1995) used the dynamic condensation
method to eliminate all the vehicle DOF on the element level.
However, if the behavior of the vehicle is concerned, which
serves as an indicator of the riding comfort, these two ap
proaches cannot be considered acceptable, because of the ap
proximations made in relating the vehicle to bridge DOF. Such
a drawback will be overcome in this paper.

To resolve the dependency of system matrices on the wheel
load positions, the condensation technique that eliminates the
vehicle DOF on the element level will be adopted in this paper.
First, two sets of equations of motion are written, one for the
bridge and the other for each of the sprung masses that make
up the train. The sprung mass equation is then discretized,
using Newmark's finite difference formulas, and condensed to
those of the bridge element in contact. The result is a VBI
element that possesses the same number of DOF as the parent
element. The applicability of the present VBI element will be
illustrated in the numerical studies.

VBI ELEMENT

As shown in Fig. I, a bridge is modeled as a beam-like
structure and the train traveling over the bridge with constant
speed v is idealized as a series of lumped masses supported
by the suspension systems, as represented by the springs and
dashpots, which in turn are acting on the bridge. In this study,
an interaction element is defined such that it consists of a
bridge (beam) element and the masses and suspension units of
the car bodies directly acting on it, as shown in Fig. 2, where
the rail irregularity r(x) and ballast with stiffness kB are also
indicated. For the parts of the birdge that are not directly under
the action of the vehicles, they are modeled by conventional
bridge elements. However, for the remaining parts that are in
direct contact with the vehicles, interaction elements consid
ering the effects of suspension units have to be used instead.
In this study, the notation [ ] is used for a square matrix, { }
for a column vector, and ( ) for a row vector.

The model depicted in Fig. 2 will be grossly referred to the
sprung moss model throughout this paper. Let the stiffness and
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(b)
FIG. 1. Train-Bridge System: (a) General Model; (b) Sprung
Mass Model

trices, respectively, of the bridge element; and {Pb} = external
nodal loads. Regarding the bridge element as a three-dimen
sional solid beam element, one can assign six DOF to each
node of the element, with three for translations and the other
three for rotations. For damping of the Rayleigh type, the three
matrices [mb], [Cb] , and [kb) are available elsewhere [see for
instance paz (1986)].

As can be seen from (1) and (3), the vehicle and the bridge
interact with each other through the contact force!c, which
varies as a function of time and position. To ensure that the
vehicle is in contact with the bridge, the reactive force exerted
by the bridge on the sprung mass must be of sufficiently low
amplitude. Whenever the contact force!c is less than zero, the
wheel mass jumps upward and the contact condition between
the vehicle and the bridge is violated. Such a condition will
be excluded from the present discussion. From the first line of
(1), along with the second line, the contact force Ie also can
be expressed as

(4)

v ..z,

L

y

Xc

FIG. 2. Vehicle-Bridge Interaction Element

From (3) and (4), it is obvious that the dynamic response of
the beam is affected not only by the moving loads, but also
by the suspension systems.

The system equations as given in (1)-(3) are nonlinear in
nature, which can only be solved by incremental methods, with
iterations for removing the unbalanced forces. Consider a typ
ical incremental step from time t to t + At. To this end, the
system equations in (1)-(3) should be interpreted as those es
tablished for the deformed position at time t + At. Let
{z}t+~t = {z}t + {Az} = vehicle displacement increments oc
curring during the step considered. By the use of (2), the
sprung mass equation in (1) can be written in an incremental
form using the strategy presented by Yang et al. (1990) as
follows:

[mb]{Ub},+t<1t + [Cb]{Ub},Ht + [[kb] + kB{Nc}(Nc)]{IlUb}

={Pb}t+<1t - {Nc}kB(rc - ZI),Ht - [[kb] + kB{Nc}(Nc)]{Ub},
(7)

{ qsl} = [kv_+ kB -kv] {ZI} (6)
qs2 , kv kv Z2,

Similarly, by the use of (2) and noting that {Ub}t+~t = {Ub}, +
{AUb}, the bridge equation in (3) can be written in incremental
form as

(8a)

+ [~v -Cv] {~I} + [kv_+ kB - kv] {IlZI}
Cv CV Z2 t+~t kv kv Ilz2

={p + kB«N~{Ub} + rc>} _ {qsl}
,+~t qs2 t (5)

where {qs}, = internal resistant forces of the vehicle suspension
at time t, i.e.

As can be seen, the two system equations as presented in (5)
and (7) for the sprung mass and the bridge, respectively, are
coupled. In the following, the sprung mass equation in (5) will
first be reduced to an equivalent stiffness equation using New
mark's single-step finite difference scheme. The sprung mass
DOF can then be eliminated and condensed to those of the
bridge element in contact.

Based on Newmark's ~ method with constant average ac
celeration, i.e., with ~ =0.25 and 'Y =0.5 (Clough and Penzien
1993)

(I)

[mb]{Ub} + [Cb]{Ub} + [kb]{Ub} = {Pb} - {Nc}fc (3)

where [mb], [Cb], and [kb] = mass, damping, and stiffness ma-

damping coefficients of the suspension system be denoted by
kv and cv , respectively, the mass of the wheel assembly by
fflw, and the lumped mass of the car body by M v • Also, let the
vertical displacements of the two nodes from the static equi
librium positions be denoted by the generalized coordinates
{zf = (Zh Z2)' Corresponding to the nodal displacements {zf
are the external forces {Pv}T = (p, 0), where p = -(Mv + mw)g
and g = the acc~leration of gravity. The equations of motion
for the sprung mass model in Fig. 2 can be written as (Fryba
1972)

where!c = the interaction force existing between the wheel
mass and the bridge element. Let Xc denote the acting position
of the sprung mass (see Fig. 2) and {Nc } a vector containing
cubic Hermitian interpolation functions for the vertical dis
placement of the beam evaluated at the contact point Xc, i.e.,
{Nc } = (N{(xc)}' The interaction force can be expressed as

fc = kB«Nc){ub} + rc - ZI) ~ 0 (2)

where the condition of fc ~ 0 is imposed to exclude the sep
aration of the vehicle from the bridge; kB = ballast stiffness;
{Ub} = nodal displacements of the beam; and rc =rail irregu
larity at the contact point Xc, which is given for any instant.
The equations of motion for the bridge element can be written
as
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and each of the terms is obtained by assembling over all beam
elements of the bridge, in particular

(17)

(19)

{f,.}, =kB [h {(q'I,r + q.I,r)aoMv

+ (q,.1 + q..,)(kv + alcv)} - ZI.,J {Nc}
(l6c)

Clearly, the stiffness matrix [kb] is step dependent, because it
is a function of the loading position Xc, as implied by the shape
function {Nc }. The equations as given in (15) represent exactly
the equations of motion for the VBI element. With the use of
the present element, the maximum element length must be less
than the minimum spacing between axles. Such a restriction
can be released if the foregoing procedure is generalized to
include the effect of multiaxle loadings.

Consider the special case of moving loads. By letting kv =
0, mw = 0, and C v = 0, one can obtain from (14) the determinant
as D = aoMvkB, from (6) the resistant force q,l.t =
kBz t •t, and from (12a) the sprung mass force q<t.t = 0. Further,
from (16a)-(16c), the following can be obtained: [kb] = [kb ],

{P,},Ht = p{Nc } and {f,.}, = {O}. Consequently, the condensed
beam equation in (15) reduces to

where the term p{Nc } = action of the moving load, as is ex
pected. On the other hand, by setting the damping coefficient
Cv and the mass mw of the wheel set assembly equal to zero
and assigning a very large number to the stiffnesses kv and kB,

one can arrive at the moving mass model.
Because the VBI element has exactly the same number of

DOF as the parent beam element and because it possesses the
property of symmetry in element matrices, conventional ele
ment assembly processes can be applied to constructing the
equations of motion for the entire vehicle-bridge system based
on the element equations in (15), that is

[Mbl{ Vb},+.11 + [Cbl{ Ub},HI + [Kb]{~Ub} = {Pb},+.11 - {Fb},
(18)

where {~Ub} = displacement increments of the bridge from
time t to t + ~t

{Pb},+.11 = 2: [{Pb},+.11 + {PS},+"'] (20a)
elm-t

r ao
[Kb] =[kb] + kBD[(Mv + fnw)(kv + atcv) + aoMvfnwl{Nc}{Nc>

(16a)

{P,}r+.11 = -kB [rc.r+.1r - (p + kBrC,r+.1I)h(kv + aoMv + atCv)] {Nc}

(16b)

{Fb}, = 2: [{is}, + [kb]{Ub},] (20b)
tlm .. t

(10)

a4 = '1. - 1;
13

where

{Z},+.11 = {Z}, + {z},~t + [(0.5 - l3){z'}, + l3{z}'HI]~t2 (8b)

{Z'},+.11 =ao{~Z} - adz}' - a3{Z'}r (9b)

{i},+.1t = {z}, + a6 {z'}, + a7{Z'},+.1, (9c)

where the coefficients and those to appear are defined as

With the relations given in (9), the sprung mass equation in
(5) can be manipulated to yield the equivalent stiffness equa
tion

[
kv + kB + aofnw + atCv -kv - atCv ] {~Zt}

-kv - atCv kv + aoMv + alCv ~Z2

={p + kBrc +0 kB(Nc){Ub}} _ ({q'l} + {q.t})
IHI q,2 I q.2 r (11)

{Z},+.11 = {Z}, + {~z} (9a)

from which

The equation as given in (13) is exactly the master-slave re
lation for condensing the sprung mass DOF to the bridge DOF,
of which the order of error is not greater than that implied by
the finite difference formulas in (8). Compared with the ap
proximate master-slave relation used by Yang and Lin (1995),
the present relation in (13) has the advantage of being simple,
accurate, and explicit. Because of this, the element to be de
rived in this paper can be used effectively in computation of
both the vehicle and the bridge responses.

By the fact that Zt.I+.1t = ZI.t + ~t and using the first line
of (13) for ~I' one can derive from (7) the condensed equa
tions of the beam at time t + ~t with the interaction effect of
the sprung mass taken into account, that is

q.2,r = -Mv(a2Z2 + a3Z'2) - cv[a4(Z2 - Zt) + a3(Z'2 - Z't)] (12b)

As can be seen, the equivalent stiffness equation in (II) is a
single-step finite difference equation, from which the displace
ment increments {~z} of the sprung mass can be solved and
related to the bridge displacements {Ub}'+.1' as

{~ZI} 1 {kv + aoMv + alcv} ( >
~2 = -V k

v
+ alC

v
(p + kBrC,r+.1r + kBNc (Ub},+.1r)

1 { (q'I.1 + q.l.r>aoMv + (qs,r + q•.,)(kv + alcv) }

D (q,I.1 + q.t.,)(aofnw + kB) + (qs,r + q.,r)(kv + atcv) (13)

where q•., = (q.t + q.2)" q,., = (q'l + q'2)' = kBz t." and

D = Ikv + kB + aofnw + alCv -kv - alCv I (14)
-kv - atCv kv + aoMv + atCv

where [kb ] = stiffness matrix for the condensed system;
{p, },+.11 = external loads caused by the sprung mass; {f,.}, =
resistant forces associated with the sprung mass; and
[kbl{ Ub}, = resistant forces exerted by the bridge element at
time t

(15)

By the same Newmark procedure, the displacement increments
{~Ud at time t + ~t can be solved from the system equations
in (18). Correspondingly, the acceleration and velocity can be
calculated from equations similar to (9) for the bridge element
as

{Vb},+.1r =ao{~Ub} - a2{Ub}, - a3{Vb}, (21a)

{Ub},+.11 = {Ub}, + a6 { Vb}, + a7{ Vb},HI (21b)

1514/ JOURNAL OF STRUCTURAL ENGINEERING / NOVEMBER 1997
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where the right superscript l = the last iteration of the previous
time step. Accordingly, the system equations in (25) reduce to
the following for the first iteration of each time step:

encountered in the study of a great number of nonlinear prob
lems. To solve problems of this sort, the (modified) Newton
Raphson method that performs iterations at constant loads can
be employed (Yang and Kuo 1994). The initial conditions to
the system equations in (25) are

Here, it should be noted that the effective stiffness matrix
[K]'+4' remains constant within each incremental step, which
need not be updated for each iteration.

For each iteration, the displacement increments {Ud i can
be solved from (25) and the total displacements of the bridge
are

(28)

(27)

Moreover, the vehicle displacement increments {az} can be
obtained from (13) and the total responses from the Newmark
type equations in (9). Here, it is noted that the vehicle accel
eration {i} serves as a measure of riding comfort for passen
gers.

As was stated, because of condensation of the VBIs on the
element level, conventional element assembly procedures can
be directly applied using the present approach. For this reason,
the amount of effort required in programming and computation
is minimal, compared with approaches that perform conden
sation on the structure level or with no condensation at all.
Such an advantage becomes more obvious in the study of
bridges subjected to a sequence of moving vehicular loads. In
such cases, all one needs is a proper bookkeeping scheme to
identify at each time step the acting position of each wheel
load of the cars composing the train. It should be noted that
the VBI element derived here is applicable not only for mod
eling railroad cars with regular intervals and constant sizes,
but also for vehicles that constitute a random traffic flow
through the highway bridges.

(23)

(29)

(3Ia)

(3Ib)

(3Ic)

with the following initial condition: {Z}?+4' = {z}:.

Once the bridge displacements {Ub}:+4' are made available, the
element displacements {Ub} :+4, can be computed thereby. It
follows that the vehicle displacement increments {az}i can be
computed from (13), by treating terms with subscript t + at
as those associated with the ith iterative step and terms with
subscript t associated with the (i - l)st iterative step. The total
responses for the sprung mass can be determined from (9) as

The acceleration and velocity of the bridge can be computed
from (21) with due account taken into the feature of iteration

(22)[Kb]t+~{aUb}={Pb}'+~ - {Pb},

where the effective stiffness matrix [Kb],+4' is

[Kb],+4' =ao[Mb] + at[Cb] + [Kb]

and the effective resistant force vector {Fb }, is

{Fb},= {Fb}, - [Mb](a2{ Ob}, + a3{ Db},) - [Cb](a4{ O}, + a,{ Db},)
(24)

During the passage of vehicles over a bridge, on the one
hand, the vehicles excite the bridge by their interaction forces;
on the other hand, the bridge affects the behavior of the ve
hicles by its motion. Such a phenomenon is typical of a non
linear interaction problem, which can only be solved by
procedures of incremental and iterative nature. For the present
purpose, consider the system equations of motion in (18). By
the finite difference equations in (19) and (21), the equations
of motion in (18) can be manipulated to yield the following
equivalent stiffness equations:

INCREMENTAL DYNAMIC ANALYSIS WITH
ITERATIONS

Here, it should be noted that both the effective stiffness matrix
[Kb],+4' and the load vector {Pb},+4, remain constant within
each time step.

For the purpose of performing iterations, the equivalent
stiffness equations for the bridge in (22), which has been pre
sented in incremental form, should be modified to include the
feature of iteration, that is

[Kb]t+~{.:lUbV = {Pb},+4' - {Fb}:~l, (25)

in which the right superscript i on each symbol indicates the
number of iterations. The right hand of (25) should now be
interpreted as the extemalload increments for the first iteration
(i = 1) and as the system unbalanced forces for the following
iterations (i ~ 2) (Yang and Kuo 1994). The philosophy for
modifying an equation originally presented in incremental
form into one in iterative form is that throughout the process
of iteration, all the terms associated with time t be interpreted
as those for the (i - l)st iterative step and all the terms as
sociated with time t + at as the ith iterative step. For instance,
the resistant force vector in (24) should be interpreted as

(Pb}:~l, = {Fb}:~l, - [Mb](a2{Ob}:~l, + a3{Db}:~l,)

(26)

Eq. (25) represents a typical nonlinear equation that can be

PROCEDURE OF ITERATIVE ANALYSIS

The following is a summary of the procedure for performing
the incremental-iterative analysis based on the modified New
ton-Raphson algorithm:

1. Read in all the structure and vehicle data.
2. Start with time t = 0 and set up the following initial

conditions: {Fb}~ = {O}, {Ub}~ = {Ob}~ = {Db}~ = {O},
and {z}~ = {i}~ = {z'}~ = {OJ. Calculate the mass matrices
[mb] for all elements and assemble the structure mass
matrix [Mb]. Select a proper time increment at for the
Newmark integration scheme.

3. For the incremental step, let t = t + at and i =1. If t is
larger than a specified value, stop the process. Otherwise,
determine the acting position Xc of each wheel load, the
rail irregularity re, and the shape vector {Ne } for elements
with wheel loads acting on them.

4. For elements carrying no wheel loads, calculate the el
ement matrix [kb]; and for elements in contact with wheel
loads, calculate the modified element matrix [kb] using
(100).

5. Assemble the bridge matrix [Kb ] and load vector
{Pb },+4" using (20a) for the latter. The damping matrix

JOURNAL OF STRUCTURAL ENGINEERING / NOVEMBER 1997/1515
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(32)

FIG. 3. Beam with Moving Sprung Mass

(33)

2 M v 7Tvt]-2w -sin-
v

mL L {}::w;

{

2 Mvg . 7Tvt}- --sm-
= mL L

o

[

2M" . 2 7Tvt 2

{}

2wv - sm - + WI
" mL Lqb +
iiv 2 M" . 7Tvt

-Wv mL sm!:

Simple Beam Subjected to Moving Sprung Mass

As shown in Fig. 3, a simple beam of span length L =25
m is subjected to a moving sprung mass. The following data
are adopted: Young's modules E = 2.87 GPa, Poisson's ratio
v = 0.2, moment of inertia I = 2.90 m\ mass per unit length
m = 2,303 kglm, suspended mass M v = 5,750 kg, suspension
stiffness kv = 1,595 kN/m, speed v = 100 km/h, frequency of
the bridge WI = 30.02 radls, frequency of the sprung mass
system W v = 16.66 rad/s, and mass ratio MJmL = 0.1. By
representing the deflection of the beam as Ub = qb(t)sin(miL),
the displacement of sprung mass as qJt) and neglecting the
effect of damping, the equations of motion for the vibration
of the beam and the sprung mass moving at speed v can be
given as (Biggs 1964)

qv

__--l-k=r--l~-····· _f_b __

~ ~
1 L ,

-2.0 ~""""'~"""","="!""'~!'1!"',","~TTTT"",,!,!",,,~!'1!"'''''''-=TT"n'",!,!:!"",""~,,=
0.0 0.1 0.2 0.3 0.4 0.0 0.11 0.7 0.11 0.1

Time (8)

FIG. 4. Midpoint Vertical Deflection of Beam

The dynamic responses of the midpoint displacement of the
beam subjected to the moving load and the sprung mass have
been plotted in Fig. 4. As can be seen, the response obtained
by the present procedure using the VBI element and based on
the sprung mass assumption agrees well with the single mode
solution to (33).

From the response of vertical acceleration for the midpoint
of the beam shown in Fig. 5, one observes that inclusion of
the higher modes can result in oscillation of the acceleration
response, which was neglected in the solution of (33). The
responses of the deflection and vertical acceleration of the
sprung mass have been plotted in Figs. 6 and 7, respectively.
The differences in these two figures between the present so
lution and that of (31) can be attributed mainly to the omission
of higher modes in the latter. A comparison of Figs. 5 and 7

In the design of bridge structures, the dynamic response
resulting from the passage of moving vehicles has been con
sidered indirectly by increasing the stresses caused by static
live loads by an impact factor, which is defined as the ratio of
the maximum dynamic response to the maximum static re
sponse of the bridge under the same load minus one. The im
pact factor adopted in this study is defined as follows:

I =RAx) - R.(x)
R.(x)

NUMERICAL EXAMPLES

Three examples are prepared to verify the VBI element and
the procedure of solution presented in this paper. First, the
dynamic responses solved by the present method for a simple
beam subjected to a moving sprung mass will be compared
with those considering the contribution of the first mode of
vibration. Second, by modeling a train as a sequence of mov
ing lumped loads or lumped masses, the impact responses of
bridges excited by the train will be investigated and compared
with existing solutions. Finally, the dynamic responses of a
cantilever subjected to different models of vehicles in motion
will be studied. In each case, the beam is modeled as 10 ele
ments.

[Cb] is calculated by assuming it to be of the Rayleigh
type. Compute the equivalent stiffness matrix [Kb]t+At us
ing (23). For the present problem, the system matrices
[Kb]t+At and {Pb}t+At are constant for each time step.

6. Determine the resistant force vector {Fb}:~it using (26).
For i 2: I, check if the unbalanced forces ({Pb},+At 
{Fb } :~i,) are less than a given tolerance. If yes and if the
contact condition fc 2: 0 as given in (2) is satisfied, go
to step 3 for the next increment.

7. Solve the displacement increments {aUb}i from the sys
tem equations in (25). Determine the vehicle displace
ment increments {aZ}i from (13), where terms with sub
script t + at should be interpreted as those for the ith
iterative step and terms with subscript t for the (i - l)st
step.

8. Find the total displacements {Ub}:+At for the bridge from
(29) and {Z}:+At for the vehicle from (31a). Compute the
displacement derivatives {Ob}~+At and {Ob}:+At for the
bridge using (30) and {i}:+At and {Z'l:+At for each sprung
mass using (31b) and (31c).

9. Let i = i + 1 and go to step 6 for the next iterative step.

DEFINITION FOR IMPACT FACTOR

Using the present procedure, the coupling effect between
the bridge and the vehicle is considered through the condensed
elements. Because of this, the number of cycles required for
iteration is generally small, compared with approaches that do
not rely on the condensation technique. The other advantage
is that the vertical response of the sprung masses is obtained
as part of the solution, which serves as a measure of the riding
comfort of passengers, in addition to the response of the
bridge.

where Rd(x) and R.(x) = maximum dynamic and static
response, respectively, of the bridge at cross section x because
of the passage of the moving load. Such a definition is more
rational and computationally more convenient than the dy
namic increment factor used by the American Association of
State Highway and Transportation Officials (AASHTO), be
cause both the maximum dynamic and the static responses are
calculated for the same cross section. Such an advantage will
become obvious when dealing with moving loads that appear
as a series or as a random flow (Yang and Yau 1996).
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215.6 leN and the mass to be M v = 22,000 kg and mw = 0 kg.
Two cases are considered herein. In the first case, by letting
the suspension stiffness kv , damping cv, and ballast stiffness ks
equal zero, the moving load model can be obtained. In the
second case, by letting the stiffnesses kv and ks equal a very
large number, say, with kv = ks = 9.0 X 106 leN/m, the moving
mass model is obtained. The impact factors I calculated for
the midpoint displacement of the beam subjected to the mov
ing loads using the two models have been plotted in Fig. 8,
against a nondimensional speed parameter S, defined as the
ratio of the exciting frequency of the moving vehicle Trv/L to
the fundamental frequency w of the bridge. Also shown in the
figure are the results based on the analytical work of Yang et
al. (1996) by eigenfunction expansion. From this figure, it is
obvious that the present solutions correlate very well with
those of the analytical study. Besides, the moving mass model
tends to reduce the frequency of vibration of the vehicle-bridge
system, in the sense that the critical speed for the peak re
sponse to occur becomes smaller.

Free-Fixed Beam with Various Models for Moving
Vehicles

Fig. 9 shows a cantilever subjected to a moving lumped
mass. The following data are assumed: length L = 7.62 m;
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FIG. 8. Impact Response for Bridge Sustaining a Moving Train
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FIG. 6. Deflection of Sprung Mass
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FIG. 5. Midpoint Vertical Acceleration of Beam
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FIG. 7. Vertical Acceleration of Sprung Mass

indicates that the sprung mass is more sensitive than the beam
to the omission of higher-order terms. It should be noted that
the vertical acceleration of the sprung mass serves as a mea
sure of the comfort level for passengers riding on the vehicle.

Simply Supported Beam Subjected to Moving Train

Consider a simply supported beam with the following prop
erties: L = 20 m, 1= 3.81 m4

, E = 29.43 GPa, m = 34,088
kg/m, and damping ratio = 2.5%. The train traveling over the
bridge contains 10 bogies, which can be modeled as a se
quence of moving lumped loads with regular nonuniform in
tervals as

I+-Lc~ I+-Ld~ , ... ,+-Ld~ I+-Lc~ I+-Ld~ I+-Lc~ I
where L c = 18 m; Ld = 6 m; and "I" represents the lumped
load p. Assume the weight p of the lumped load to be p =

FIG. 9. Cantilever with Mass Moving at Constant Speed
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FIG. 10. Comparison of Results for Cantilever
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velocity v = 50.8 m/s; flexural rigidity EI = 9.474 X 106 NI
m2

; mass of the beam per unit length m = 0.1192 kg/m;
lumped mass M v =6.81 kg; and moving load =66.74 N. The
results for the free-end deflection of the cantilever obtained by
the moving mass and moving load models have been plotted
in Fig. 10, along with those of Akin and Mofid (1989). As can
be seen, good agreement has been achieved between the pres
ent solutions and those of Akin and Mofid (1989). In addition,
by modeling the moving mass as a sprung mass with suspen
sion stiffness kv = 10.43 kN/m, assuming 0.1 % damping for
the cantilever, and letting the sprung mass be always in contact
with the cantilever, the dynamic response solved for the free
end has also been shown in Fig. 10. It can be seen that for
most of the acting period of the vehicle on the cantilever, i.e.,
0.15 s, the moving load model tends to produce the largest
response, the sprung mass the second, and the moving mass
the least.

CONCLUDING REMARKS

In this study, the equations of motion for the vehicle is first
discretized using Newmark's finite difference formulas and
then condensed to the bridge equations, considering the con
dition of contact between the vehicles and the bridge. The
element thus derived is referred to as the VBI element, which
has the same number of OOF as the parent element, while
possessing the properties of symmetry and bandedness in el
ement matrices. As such, conventional assembly process can
be directly applied to forming the equations of motion for the
entire vehicle-bridge system. Characterized by the fact that the
VBI is duly taken into account, the derived element can be
reliably used in computing the vehicle response, which serves
as a measure of passengers' riding comfort, in addition to the
bridge response. The applicability of the derived element has
been demonstrated in the numerical examples. Besides, it is
concluded that high modes of vibration of the bridge affect
more significantly the response of the vehicle than the bridge.
Compared with the moving load model, the use of the moving
mass model tends to reduce the frequency of vibration of the
entire vehicle-bridge system, as the critical speed at which the
peak response occurs becomes smaller.
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